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Abstract. Single index financial market models cannot account for the empirically observed complex in-
teractions between shares in a market. We describe a multi-share financial market model and compare
characteristics of the volatility, that is the variance of the price fluctuations, with empirical characteristics.
In particular we find its probability distribution is similar to a log normal distribution but with a long
power-law tail for the large fluctuations, and that the time development shows superdiffusion. Both these
results are in good quantitative agreement with observations.

PACS. 05.40.Fb Random walks and Levy flights – 87.23.Ge Dynamics of social systems

1 Introduction

Recent works have shown that financial markets cannot
be completely described by single index models since they
do not account for complex interactions among stocks.
Share and currency cross correlation matrices show some
large eigenvalues where the market and certain groups
of companies/currencies move together, against a back-
ground that would be expected from Random Matrix
Theory [1]. The largest eigenvalue shows sudden increase
at crashes [2] showing a strong global behaviour at such
times. Share cross-correlations are generally positive [3].
Recent results [4] show more complex properties of the
simultaneous distribution of individual share returns cou-
pled in a market. These results indicate that individual
stocks in a market are coupled in a complex fashion and
single index models cannot account for such characteris-
tics.

In a recent paper [5] we have described a multi-share
model of a financial market and shown that it can ac-
count for some inter-share characteristics as well as for
some of the now ‘well-known’ properties, such as the ob-
servation that real market returns distributions show ‘fat-
tails’. That is, the returns distributions are Levy stable
distributions [6] for the central part often characterised
by a parameter α ' 1.4–1.7, while the wings (after about
4 standard deviations) fall-off faster as a power-law (expo-
nent 2 ∼ 5) or possibly as a stretched exponential [7–11].

In this paper we will show by numerical simulations
that this model can also account for the empirically ob-
served properties of the volatility. Volatility is the local
variance of a price returns time series. The volatility dis-
tribution shows an approximate log-normal distribution
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for the central part but with tails that seem to follow a
power law with exponent ' 4 [12]. Furthermore volatil-
ity is known to be ‘clustered’. That is we observe bursts
of relatively high volatility separated by longer periods
of relatively low volatility. This intermittent behaviour is
characterised by a superdiffusion with exponent ' 0.7 [9,
11].

2 Model

Here we describe the model first presented in [15]. A
more detailed discussion of its origins can be found in [5].
Precursor models can be found in [13,14,16].

In this model there are N interacting stocks i =
1, ..., N where for example i = 1 refers to ‘IBM’, i = 2
refers to ‘Disney’ etc. If we were considering the S&P500
then N ≈ 500. Each stock is completely characterized by
two variables:

1) Excess demand/supply, si(t). This is a spin vari-
able si(t) = ±1 which describes stock i’s current market
demand/supply state. That is if si(t) = 1 then stock i is
in the excess demand state at time t, but if si(t) = −1
then it is in the excess supply state. In reality excess de-
mand/supply has magnitude as well as sign but in this
extreme simplification only its sign is taken into account.
This is because as explained below we are only interested
in modeling the self-reinforcing persistence characteristics
of each stock i. (This model can be easily generalized by in-
cluding a excess supply/demand magnitude gi(t), by, say,
randomly choosing the magnitude gi(t) from a Gaussian
(or otherwise) distribution each t.) The price return∆pi(t)
for stock i at time t is given by ∆pi(t) = Nsi(t)/2. The
‘index’ price return ∆p(t) is then given by ∆p(t) = S(t)/2
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where S(t) =
∑N
i=1 si(t). This is just the usual linear re-

lationship dp/dt = Dem(t) − Sup(t), where Dem(t) and
Sup(t) refer to the demand and supply at time t respec-
tively. (See for example [18].)

2) ‘Speculator Confidence’, Vi(t) in stock i at time
t. This is a real number which describes the overall
(mean) speculator expectation of the current excess de-
mand/supply state si(t) continuing to the next time step,
or reversing. In this model speculators are homogenous in
their views. High confidence in a stock means speculators
in general expect the current demand/supply state si(t) of
that stock to continue, low confidence means they expect
a reversal. Our confidence Vi(t) is cumulative and should
be thought of like a ‘fitness’ in ecodynamics. It is not an
intrinsic property of a stock, but is defined only by the
current speculators, as a result of their expectations, and
of course changes with time.

There is no spatial dimension and stocks interact only
through the market macrostate defined by 1) the market
excess supply/demand G(t) = S(t)/N where G(t) is the
mean-spin G(t) = 1/N

∑N
i=1 si(t), and 2) the market con-

fidence (market fitness) defined by V (t) = 1/N
∑N
i=1 Vi(t).

In real markets both of these are known (imperfectly) to
the speculators. (In the case of the mean-confidence V (t),
there may just be a general ‘mood’ traders can sense.)

For the dynamics every time step t we calculate G(t)
and V (t) and then calculate the relative confidence ui(t) of
stock i given by ui(t) = Vi(t)−V (t). In this model specula-
tors’ expectations are on average completely self-fulfilling
and with probability Qi(t) = Q(ui(t)) where Q(x) is given
by,

Q(x) =
1

1 + exp(−2βx)
(1)

the stock state si(t) is reinforcing or persistent so that
si(t + 1) = si(t), while with probability 1 − Q(ui(t)) it
reverses or is anti-persistent so that si(t+ 1) = −si(t).

Therefore it is a basic assumption of this model that
there are always persistent and anti-persistent stocks and
we can imagine how this might occur as follows: Every
time t, the speculators choose a pair of stocks α and β
from, say, the excess demand stocks so that sα(t) = 1 and
sβ(t) = 1 and compare them by comparing their confi-
dences Vα(t) and Vβ(t). Suppose Vα(t) > Vβ(t), therefore
the speculators decide to demand α more and to supply
β instead. Therefore sα(t + 1) = 1 and sβ(t + 1) = −1.
Conversely suppose the speculators are comparing stocks
α and β which are in excess supply with sα(t) = −1
and sβ(t) = −1, where Vα(t) > Vβ(t), then speculators
decide to continue to supply α while demanding β so
that sα(t + 1) = −1 and sβ(t + 1) = 1. If we imagine
this process of comparing stocks happening continuously
we can imagine each share generally interacting with the
market confidence V (t) through the relative confidence
ui(t) = Vi(t) − V (t) and equation 1 with the above si(t)
update dynamics becomes a plausible description. (In fact
as an alternative model, to be reported separately, we can
say high valued stocks α are persistent sα(t + 1) = sα(t)
but instead of low-valued stocks β being anti-persistent we

could imagine that they are completely independent of the
previous state such that sβ(t+ 1) = ±1 at random.) (We
should also point out that if the idea of anti-persistent
reversing demand/supply stock states seems strange so
should the idea of persistent high volatility itself!)

The relative confidence ui(t) measures to what extent
speculators have faith in the persistence of stock i’s state
si(t) compared to their belief in the persistence of the
whole market V (t). The ‘inverse temperature’ parame-
ter β in equation 1 measures to what extent speculator
expectation is self-fullfilling, that is the extent to which
homogenous ‘herding’ occurs. When β = ∞ the system
is deterministic and equation 1 reduces to a step func-
tion and the state of stocks i, si(t), with Vi(t) > V (t)
will be persistent with probability 1, while stocks i with
Vi(t) < V (t) will be anti-persistent with probability 1, i.e.
complete homogenous herding. In this case the speculators
behave with ‘one mind’. With β = 0 all states si(t + 1)
are chosen randomly independent of si(t) and speculators
are therefore completely independent in their viewpoints.
(We can also say equivalently that β measures the extent
to which traders know stock i’s confidence Vi(t).) It is a ba-
sic assumption of this model that a single stock cannot be
considered on it’s own, independently of the rest of mar-
ket, speculators are always dynamically choosing. This is
reminiscent of an ecosystem where a single organism can-
not be considered independently of the other coevolving
organisms in the system.

In the version of this model presented here, the dy-
namics of the confidences Vi(t) themselves are treated as
internally defined behaviour of the model. If a stock i has
persistent excess demand/supply at time t then we sug-
gest speculators decrease their confidence Vi(t) in it by a
small amount c, (c > 0). If on the other hand the excess de-
mand/supply of stock i is observed to reverse we say spec-
ulator confidence is coupled to the excess demand/supply
state of the market G(t) such that the change in confi-
dence, ∆Vi(t) = Vi(t+ 1)− Vi(t), is given by,

∆Vi(t) =

{
−c, if si(t+ 1) = si(t)
si(t)G(t), if si(t+ 1) = −si(t).

(2)

Therefore since si(t)G(t) = −∆si(t)G(t)/2, speculator
confidence Vi(t) in stock i decreases when stock i’s state
si(t) moves into the overall market majority state as mea-
sured by G(t). This means the probability of a stocks state
reversing increases when it moves into the majority and
decreases when it moves into the minority. This rule has
some similarity to the Minority Game [17]. We believe,
however, that it is more appropriate for financial market
modeling to increase an agent’s fitness when the agent
moves into the minority, rather than when it is in the
minority. As is well known, the way to make speculative
money in markets is to stay in the majority but switch
state into the minority just before everybody else does.
(See also [18].) Of course in the Minority Game the agents
are traders not stocks, but here we assert that a similar
effect occurs between individual stocks and the market it-
self because of the effect of the coupling of the individual
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Fig. 1. Single realization of the market index price time series
p(t) for c = 0.001, β = 80 and N = 200.

stocks to the overall market. This coupling is due to the
collective choosing action of the background traders.

Our stock confidences Vi(t) and the correspond-
ing probabilities Qi(t) are defined in cumulative terms,
through continuous changes, like cumulative fitnesses in
ecodynamics. We believe this is in keeping with the way
people think, traders do not simply forget their previous
evaluations of the stocks, constructing probabilities anew,
but rather dynamically update their perceptions, in a sim-
ple way depending on the current behaviour of the stock.

While the parameter β measures the amount of homo-
geneity of speculator opinion in the market, c measures
the rate by which the speculators in general lose faith in
a current price trend si(t+ 1) = si(t). That is the rate by
which they lose faith in a stock’s bullishness or bearish-
ness.

The dynamic is synchronous, all Vi(t) and si(t) are up-
dated at the same V (t) andG(t) according toQ(ui(t)). For
initial conditions the spins si(0) are chosen randomly and
the confidences Vi(0) randomly and uniformly on [−1, 1].

3 Numerical results. The behaviour
of the volatility

In our paper [5] we describe the behaviour of the model in
detail as we vary the parameters c and β. As explained in
that paper we believe real financial markets are described
by c ≈ 0 (c > 0) and β ≈ 80. We show in that paper
that for those parameters values the price returns distri-
butions agree very well with the empirical observations
mentioned in the Introduction. A typical index price time
series for c = 0.001, β = 80 and N = 200 is shown in
Figure 1. This is just defined from the cumulative changes
as p(t) =

∑t
j=1 ∆p(j). Qualitatively it looks very reminis-

cent of a real time series, with periods of time which look
like Gaussian random walks and other times which have
larger fluctuations. One ‘crash’ is visible, as is a period of
‘sustained growth’.
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Fig. 2. Distribution of absolute price changes |∆p(t)∆t| for
∆t = 9, c = 0.001, β = 80 and N = 200. The distribution is
calculated from one single realization of the price index time
series. The lower panel shows the distribution in linear-linear
axes, the upper panel in log-log axes.

Here we study the behaviour of the volatility for the
same parameter values and compare it with real observa-
tions mentioned in the Introduction.

Volatility is usually measured from financial market
time series by taking a certain time window and calcu-
lating the standard deviation of the price fluctuations in
that window. When considering time series of length sev-
eral years the window is often of the order of a few weeks.
Here, as a proxy for the volatility, we use the distribu-
tion of the absolute changes in price in a similar way
to [12]. This is shown in Figure 2 for the absolute val-
ues of ∆p(t)∆t=9 =

∑t+9
j=t∆p(j). We choose to show the

∆t = 9 distribution, however other ∆t distributions are
similar. Shown in the bottom panel is the distribution in
linear-linear axes. The distribution is similar in appear-
ance to the log-normal distribution, although it has a long
tail. The distribution is shown in log-log axes in the up-
per panel of Figure 2. The tail is a straight line meaning
the extreme absolute changes have a power-law distribu-
tion. The slope of the tail is approximately 4, in very good
agreement with empirical results in [12], explained in the
Introduction.

Next we study the dynamical behaviour of the volatil-
ity. In [5] we show that the price changes time series from
this model show intermittent volatility clustering. In that
paper we give some explanation for this behaviour. For
our chosen parameters c = 0.001 and β = 80 the time se-
ries shows weak superdiffusion, the characteristic of per-
sistence. Shown in Figure 3 in log-log axes is the variance
σ2(∆t) of the price changes ∆p(t)∆t time series, plotted
against ∆t. From the relationship,

σ2(∆t) = (∆t)2µ (3)

we obtain 2µ ≈ 1.5 for ∆t ≈ 1 ∼ 300, while for ∆t >
300 we obtain 2µ ≈ 1.0. This implies superdiffusion at
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Fig. 3. Diffusion of the volatility for a single realization of the
price index time series with c = 0.001, β = 80 and N = 200.
The variance σ2(∆t) is plotted against ∆t in log-log axes. The
upper curve is the results from the time series, the lower curve
is from the scrambled time series.

shorter time scales but with reversion to normal diffusion
for longer time scales. This is in very close agreement with
studies in [12], explained in the Introduction. Also shown
in Figure 3 is the same analysis for the scrambled time
series, performed as a check. As expected the slope reverts
to that for normal diffusion.

4 Discussion

We have described a multi-share financial market model
and numerically studied the behaviour of the volatility of
the market index price changes ∆p(t) for the parameter
values c = 0.001 and β = 80. Our results agree very well
with empirical studies. In our paper [5] we show these
results are robust to changing the value of c providing it
remains ‘small’ or equivalently the system size N is large.
Since c measures the rate at which speculators become
nervous of continuing bullish or bearish trends, c → 0,
(c > 0), means markets find a state where speculators try
to collectively ‘stand their ground’ the longest. β ≈ 80
in fact corresponds to a phase transition between a regime

where price fluctuations obey Gaussian statistics and a
regime where they obey Levy distribution [6] statistics.
In [5] we give qualitative reasons why markets should be
found in this phase transition region.
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